
328 ATL A 2018 PROCEEDINGS

Building Library Web Apps
By Steve Jamieson, Covenant Theological Seminary

ABSTR ACT Previous conferences have included workshops encour-
aging librarians to learn computer programming skills in order to develop
efficient software solutions for problems they face in their work. This
poster presentation highlighted two web apps developed by Covenant’s
library staff: a reference e-book meta-search engine and an interac-
tive ILL request form supporting inbound OpenURL linking. The poster
described motivations for developing these apps, reviewed the tech-
nology used and the development process, summarized the impact on
library service, and identified directions for future development.

E-REFERENCE METASEARCH

Background & Challenges
The Covenant Library had acquired a small collection of online refer-
ence titles on the Gale Virtual Reference Library platform. Wanting
to grow the availability of online reference content for our patrons,
particularly in areas not as well served by Gale, we also added content
on the Credo Reference platform (and still later added content from
Oxford Reference and De Gruyter). However, by moving to having
content distributed across multiple online reference platforms, there
was no longer a single search interface for that content. If a patron was
interested in a specific title, they could locate that through the library
catalog, but there was no single place to search within all available
online reference content.

We wanted to provide our patrons with a single search interface
that would surface relevant online reference material across all our
online reference platforms.

Design & Implementation
MODULAR STRUCTURE Each platform provides its own unique API
or interface for searching, so the search results are not provided in
any consistent format. Therefore, we needed a modular design that

Posters 329

https://www.covenantlibrary.org/reference-search/?q=inner-biblical+interpretation

would allow us to drop in a custom connector script for each platform
that would pass the user query to the appropriate endpoint, parse
the response data according to the platform’s chosen format (XML,
HTML, JSON, etc.), and return the data to our app in a standardized
format and structure.

330 ATL A 2018 PROCEEDINGS

ASYNCHRONOUS Response times for each platform vary, so rather
than waiting for all responses to arrive before displaying results to
the user, we run the searches of each platform asynchronously and
dynamically update the search page as results come in.

RANKING VS. GROUPING Results from each platform are returned in
relevancy ranked order, but on what basis could we compare them
against results from other platforms in order to interfile them? Would
we even want to dynamically interfile results, as that would often
cause items to move as the user was beginning to examine them?
Implementing our own relevancy ranking algorithm seemed to be
a more complicated task than we wanted to take on, so we instead
grouped results by platform, displaying just the top five from each
platform (in the order provided by the platform) followed by a link to
continue searching on that platform.

TECHNOLOGY When the user executes a search, our JavaScript web
app uses the jQuery library to asynchronously call each of our connec-
tor modules. The connector modules, written in PHP, query the refer-
ence provider’s search API or interface; parse the response for the
top five results, selecting the data we want to display to the user; and
return that data to the app in JSON format. Our app processes the
JSON from each connector as it arrives and dynamically adds the
results to the page.

Impact
Our Online Reference Search tool met our objective of creating a one-
stop search for all our online reference content. As we’ve grown from
having two e-reference providers to four, the modular system design

Library Server

Search

Results Area

Connector A

Pass query to provider

Parse response

Return JSON

Connector B, etc

AJAX
Online
Reference
Platform AXML, HTTP,

JSON, etc

HTTP
Get/post

Posters 331

accommodated the new data sources easily. The hardest part was coding
the new connector modules to communicate with the new platforms.

Future Development
As we add new platforms, we may have to reduce the number of results
displayed from each platform, or rethink how we group and/or rank
results, in order to ensure that content from all platforms is given
sufficient prominence.

ILL REQUEST FORM

Background
Covenant Seminary offers patron-initiated interlibrary loan service.
Since the library does not have a patron-facing ILL system, the staff had
configured the basic ILL request form function supplied by each of our
major database platforms, where available. The library staff had also
worked with the institution’s IT department to offer a basic web form
for submitting ILL requests for items discovered in other contexts.
Requests submitted through these systems produced an email with
the submitted information to the library’s designated ILL contact.

Challenges
IDENTITY The ILL request systems built into the database platforms
could generate requests based on the information on the record from
which the patron initiated the request; however, the patron still had to
enter his or her own identity and contact information for each request.
The vendors provided few customization options, which meant that
much of the information required by these forms was unnecessary
for our needs or redundant with patron information already on file,
and the information required by each vendor was different.

We wanted a unified patron experience that minimized the need
for patrons to repeatedly enter personal information that was unnec-
essary or already available to the library staff.

UNCLEAR PATRON WORKFLOW The inclusion of the ILL request link on
the search results screen of our databases allowed patrons to initiate
ILL without first using the library’s OpenURL link resolver service to
check for availability in other library resources, so requests could be
made for content already accessible to the patron.

332 ATL A 2018 PROCEEDINGS

We wanted the patron to initiate the ILL request from the OpenURL
resolver screen, creating a standard sequence of actions for our
patrons, and for the OpenURL resolver to pass the item data into the
ILL request form for accuracy.

STAFF WORKFLOW ILL requests were coming from multiple inter-
faces, with each providing data in a slightly different format. Adjust-
ing to inconsistencies from one request to the next made transferring
the data into the OCLC ILL system less efficient.

We wanted the data in the ILL request notification email to be
presented in a predictable format, and in a way that made it easy for
staff to copy and paste into OCLC resource sharing.

 https://www.covenantlibrary.org/ill/

Posters 333

Design & Implementation
PATRON DATA API INTEGRATION We used the API for accessing patron
data provided by our ILS to create a login mechanism that allows us
to automatically verify eligibility for ILL service, to include the neces-
sary patron information in the notification to the ILL staff, and to offer
online students the option of requesting copies of articles from our
print periodicals.

OPENURL SUPPORT In order to ensure accuracy, and for the conve-
nience of the patron, it was vital that we be able to pass information
about the desired item from our OpenURL link resolver into the ILL
request form. Therefore, we programmed our form to parse OpenURL
encoded information and to use that data to pre-fill the request form.

OPTIMIZED EMAIL TO STAFF The email sent to the ILL staff notify-
ing them of a new request was designed so that the information is
presented in an order that is sensible to their workflow and formatted
so that it is easy to select and copy.

System-generated email from covenantlibrary.org

334 ATL A 2018 PROCEEDINGS

RESPONSIVE WEB DESIGN With mobile device usage increasing, we
made sure that the ILL request form looked and worked great on small
and large screens alike.

TECHNOLOGY The request form is implemented in PHP for managing
the login session, parsing OpenURL data into the form, performing
data validation after submission, and sending the staff a notification
email. The form also makes use of JavaScript and the jQuery library to
customize the form fields and options offered based on the requested
material type.

IMPACT We configured our OpenURL link resolver to display the new
OpenURL-enabled ILL request form as a fulfillment option, and we
removed the ILL request links from all of our databases. That created
a clean, guided workflow for our patrons as they sought to access
materials discovered in their searches.

The clean, unified, optimized staff notification emails enhanced
staff workflows.

FUTURE DEVELOPMENT The ILL request form currently supports the
original OpenURL 0.1 standard, which is still in wide use. For future
compatibility, we will need to add support for the OpenURL 1.0 stan-
dard.

